Primality proof for n = 983685833987:
Take b = 2.
b^(n-1) mod n = 1.
8336320627 is prime.
b^((n-1)/8336320627)-1 mod n = 950236973967, which is a unit, inverse 137188557913.
(8336320627) divides n-1.
(8336320627)^2 > n.
n is prime by Pocklington's theorem.