Primality proof for n = 842498333348457493583344221469363549317452798028756632976214931843:
Take b = 2.
b^(n-1) mod n = 1.
3167286967475404111215579779960013343298694729431415913444417037 is prime.
b^((n-1)/3167286967475404111215579779960013343298694729431415913444417037)-1 mod n = 842498333348457493570570001501056154826922830104642888491280316802, which is a unit, inverse 459368267319114885641819384483253243660393846470649791671144555593.
(3167286967475404111215579779960013343298694729431415913444417037) divides n-1.
(3167286967475404111215579779960013343298694729431415913444417037)^2 > n.
n is prime by Pocklington's theorem.