Primality proof for n = 8336320627:
Take b = 2.
b^(n-1) mod n = 1.
1389386771 is prime. b^((n-1)/1389386771)-1 mod n = 63, which is a unit, inverse 1455548046.
(1389386771) divides n-1.
(1389386771)^2 > n.
n is prime by Pocklington's theorem.