Primality proof for n = 82346938205356038105099017:

Take b = 2.

b^(n-1) mod n = 1.

1131014973702835376677 is prime.
b^((n-1)/1131014973702835376677)-1 mod n = 26712236373319478013273238, which is a unit, inverse 4008626004909148236229863.

(1131014973702835376677) divides n-1.

(1131014973702835376677)^2 > n.

n is prime by Pocklington's theorem.