Primality proof for n = 8067780739605749:
Take b = 2.
b^(n-1) mod n = 1.
288135026414491 is prime.
b^((n-1)/288135026414491)-1 mod n = 268435455, which is a unit, inverse 322796519167839.
(288135026414491) divides n-1.
(288135026414491)^2 > n.
n is prime by Pocklington's theorem.