Primality proof for n = 65982793:
Take b = 2.
b^(n-1) mod n = 1.
2749283 is prime. b^((n-1)/2749283)-1 mod n = 16777215, which is a unit, inverse 32308316.
(2749283) divides n-1.
(2749283)^2 > n.
n is prime by Pocklington's theorem.