Primality proof for n = 6114313750387749125096789:
Take b = 2.
b^(n-1) mod n = 1.
139759026803824079 is prime.
b^((n-1)/139759026803824079)-1 mod n = 3571720895531559946754220, which is a unit, inverse 4167520736099234533999317.
(139759026803824079) divides n-1.
(139759026803824079)^2 > n.
n is prime by Pocklington's theorem.