Primality proof for n = 57896044618658097711785492504343953926634992332820282019728792003956564819949:
Take b = 2.
b^(n-1) mod n = 1.
74058212732561358302231226437062788676166966415465897661863160754340907 is prime.
b^((n-1)/74058212732561358302231226437062788676166966415465897661863160754340907)-1 mod n = 427094198651976259540344842774561673889945192655078505504941250475370961480, which is a unit, inverse 55540832096118778044507775605005710249233119951144946814680141076505643269084.
(74058212732561358302231226437062788676166966415465897661863160754340907) divides n-1.
(74058212732561358302231226437062788676166966415465897661863160754340907)^2 > n.
n is prime by Pocklington's theorem.