Primality proof for n = 5515321256273:
Take b = 2.
b^(n-1) mod n = 1.
289249 is prime.
b^((n-1)/289249)-1 mod n = 671989888553, which is a unit, inverse 155338124992.
1039 is prime.
b^((n-1)/1039)-1 mod n = 4249076584260, which is a unit, inverse 1917883892183.
(1039 * 289249) divides n-1.
(1039 * 289249)^2 > n.
n is prime by Pocklington's theorem.