Primality proof for n = 545087:
Take b = 2.
b^(n-1) mod n = 1.
607 is prime.
b^((n-1)/607)-1 mod n = 518980, which is a unit, inverse 62616.
449 is prime.
b^((n-1)/449)-1 mod n = 392898, which is a unit, inverse 329386.
(449 * 607) divides n-1.
(449 * 607)^2 > n.
n is prime by Pocklington's theorem.