Primality proof for n = 532247449:
Take b = 2.
b^(n-1) mod n = 1.
363557 is prime. b^((n-1)/363557)-1 mod n = 56715985, which is a unit, inverse 202966419.
(363557) divides n-1.
(363557)^2 > n.
n is prime by Pocklington's theorem.