Primality proof for n = 5283269:
Take b = 2.
b^(n-1) mod n = 1.
311 is prime.
b^((n-1)/311)-1 mod n = 5215895, which is a unit, inverse 4618371.
137 is prime.
b^((n-1)/137)-1 mod n = 4483018, which is a unit, inverse 4538159.
(137 * 311) divides n-1.
(137 * 311)^2 > n.
n is prime by Pocklington's theorem.