Primality proof for n = 463692400718849804323:
Take b = 2.
b^(n-1) mod n = 1.
214692087848261 is prime.
b^((n-1)/214692087848261)-1 mod n = 100838370301940303199, which is a unit, inverse 27417911611131244732.
(214692087848261) divides n-1.
(214692087848261)^2 > n.
n is prime by Pocklington's theorem.