Primality proof for n = 456597257999:
Take b = 2.
b^(n-1) mod n = 1.
761069 is prime. b^((n-1)/761069)-1 mod n = 349453078187, which is a unit, inverse 297357385056.
(761069) divides n-1.
(761069)^2 > n.
n is prime by Pocklington's theorem.