Primality proof for n = 44706919:
Take b = 2.
b^(n-1) mod n = 1.
9349 is prime. b^((n-1)/9349)-1 mod n = 24793508, which is a unit, inverse 35850462.
(9349) divides n-1.
(9349)^2 > n.
n is prime by Pocklington's theorem.