Primality proof for n = 3938699322577:
Take b = 2.
b^(n-1) mod n = 1.
222374623 is prime.
b^((n-1)/222374623)-1 mod n = 1505362245662, which is a unit, inverse 3427403832404.
(222374623) divides n-1.
(222374623)^2 > n.
n is prime by Pocklington's theorem.