Primality proof for n = 3529893208993:
Take b = 2.
b^(n-1) mod n = 1.
855109789 is prime.
b^((n-1)/855109789)-1 mod n = 1580317812275, which is a unit, inverse 752553502718.
(855109789) divides n-1.
(855109789)^2 > n.
n is prime by Pocklington's theorem.