Primality proof for n = 3456146551018122488287:
Take b = 2.
b^(n-1) mod n = 1.
6193811023329968617 is prime.
b^((n-1)/6193811023329968617)-1 mod n = 1130139711321981832347, which is a unit, inverse 2645154751524388803712.
(6193811023329968617) divides n-1.
(6193811023329968617)^2 > n.
n is prime by Pocklington's theorem.