Primality proof for n = 309473862136357:
Take b = 2.
b^(n-1) mod n = 1.
25789488511363 is prime.
b^((n-1)/25789488511363)-1 mod n = 4095, which is a unit, inverse 255212022572522.
(25789488511363) divides n-1.
(25789488511363)^2 > n.
n is prime by Pocklington's theorem.