Primality proof for n = 308761441:
Take b = 3.
b^(n-1) mod n = 1.
49481 is prime. b^((n-1)/49481)-1 mod n = 201156782, which is a unit, inverse 43610143.
(49481) divides n-1.
(49481)^2 > n.
n is prime by Pocklington's theorem.