Primality proof for n = 289450259140102639080071069:
Take b = 2.
b^(n-1) mod n = 1.
479208894057626693 is prime.
b^((n-1)/479208894057626693)-1 mod n = 137428353945403922792031019, which is a unit, inverse 217927885242789779280994159.
(479208894057626693) divides n-1.
(479208894057626693)^2 > n.
n is prime by Pocklington's theorem.