Primality proof for n = 274641681901431937:
Take b = 2.
b^(n-1) mod n = 1.
27869213 is prime.
b^((n-1)/27869213)-1 mod n = 101106520766935027, which is a unit, inverse 226249110964769897.
313 is prime.
b^((n-1)/313)-1 mod n = 37174037842747943, which is a unit, inverse 267650764067605571.
(313 * 27869213) divides n-1.
(313 * 27869213)^2 > n.
n is prime by Pocklington's theorem.