Primality proof for n = 2534364967:
Take b = 2.
b^(n-1) mod n = 1.
8620289 is prime. b^((n-1)/8620289)-1 mod n = 2527690081, which is a unit, inverse 1080576377.
(8620289) divides n-1.
(8620289)^2 > n.
n is prime by Pocklington's theorem.