Primality proof for n = 250162337:
Take b = 2.
b^(n-1) mod n = 1.
7817573 is prime. b^((n-1)/7817573)-1 mod n = 42207566, which is a unit, inverse 237712881.
(7817573) divides n-1.
(7817573)^2 > n.
n is prime by Pocklington's theorem.