Primality proof for n = 2468656374749233:
Take b = 2.
b^(n-1) mod n = 1.
530597 is prime.
b^((n-1)/530597)-1 mod n = 2464693106994372, which is a unit, inverse 1462225077895207.
14107 is prime.
b^((n-1)/14107)-1 mod n = 1008952981838851, which is a unit, inverse 56946018361549.
(14107 * 530597) divides n-1.
(14107 * 530597)^2 > n.
n is prime by Pocklington's theorem.