Primality proof for n = 2103438853:
Take b = 2.
b^(n-1) mod n = 1.
3075203 is prime. b^((n-1)/3075203)-1 mod n = 800221333, which is a unit, inverse 100595961.
(3075203) divides n-1.
(3075203)^2 > n.
n is prime by Pocklington's theorem.