Primality proof for n = 19505309445451:
Take b = 2.
b^(n-1) mod n = 1.
720869 is prime.
b^((n-1)/720869)-1 mod n = 5097973243554, which is a unit, inverse 1604241335938.
131 is prime.
b^((n-1)/131)-1 mod n = 16513215487283, which is a unit, inverse 14594551299860.
(131 * 720869) divides n-1.
(131 * 720869)^2 > n.
n is prime by Pocklington's theorem.