Primality proof for n = 194995755782084489:
Take b = 2.
b^(n-1) mod n = 1.
14878771 is prime.
b^((n-1)/14878771)-1 mod n = 48041758379890202, which is a unit, inverse 157843789276174592.
10273 is prime.
b^((n-1)/10273)-1 mod n = 55507690111326546, which is a unit, inverse 130776938136010960.
(10273 * 14878771) divides n-1.
(10273 * 14878771)^2 > n.
n is prime by Pocklington's theorem.