Primality proof for n = 1687658803:
Take b = 2.
b^(n-1) mod n = 1.
281276467 is prime. b^((n-1)/281276467)-1 mod n = 63, which is a unit, inverse 857223519.
(281276467) divides n-1.
(281276467)^2 > n.
n is prime by Pocklington's theorem.