Primality proof for n = 161567415114024992333870349255799:
Take b = 2.
b^(n-1) mod n = 1.
147147008300569209775838205151 is prime.
b^((n-1)/147147008300569209775838205151)-1 mod n = 90624283463138356983451427280174, which is a unit, inverse 19226912688727871432431575015003.
(147147008300569209775838205151) divides n-1.
(147147008300569209775838205151)^2 > n.
n is prime by Pocklington's theorem.